Site code ¹	OTR605	Location	Barwon Downs					
		Landform	Hills – plateaux remnant					
		Geology	Neogene Gellibrand Marl					
		Element	Flat					
		Slope	0%					
		Aspect	-					

Melacic, Pipey, Aeric Podosol

Horizon	Depth (cm)	Description						
A1	0–10	Pale brown (10YR 6/3), white (10YR8/1 dry); silty loam; apedal massive structure; pH 6.0; clear boundary to:						
A2	10–20	Yellowish brown (10YR5/4), brown (10YR4/3 dry); heavy clay; strong fine subangular blocky structure; pH 5.6; boundary to:						
B21	20–40	Dark yellowish brown (10YR4/4); heavy clay; strong fine subangular blocky structure; pH 5.5; boundary to:						
B22	40–70	Dark yellowish brown (10YR4/4); heavy clay; strong fine subangular blocky structure; pH 5.8; boundary to:						
C1	70–100	Brown (10YR4/3) with yellowish brown (10YR5/6) and red (2.5YR4/6) mottles; heavy clay; strong fine subangular blocky structure; pH 5.4; boundary to:						
	100–125	Red (2.5YR5/6) with yellowish brown (10YR5/4), light grey (5Y5/1) and red (2.5YR4/6) mottles; heavy clay; strong fine subangular blocky structure; pH 5.0; boundary to:						
	125–140+	Red (2.5YR4/6) with yellowish brown (10YR5/4) light grey (5Y5/1) mottles; heavy clay; strong fine subangular blocky structure; pH 4.6						

¹ Source: Pitt AJ (1981) A study of the land in the catchments of the Otway Range and adjacent plains. TC-14. Soil Conservation Authority. Kew, Victoria

Analytical	data ²
------------	-------------------

Site OTR413	Sample depth	р	Н	EC	NaCl	Ex Ca	Ex Mg	Ex K	Ex Na	Ex Al	Ex Acidity	FC –10kPa	PWP –1500kPa	KS	FS	Ζ	С
Horizon	cm	H ₂ O	CaCl ₂	dS/m	%	cmolc/kg	cmol _c /kg	cmol _c /kg	cmolc/kg	mg/kg	cmol _c /kg	%	%	%	%	%	%
A1	0-10	6.0	N/R	0.012	N/R	2.0	2.1	1.8	0.1	N/R	N/R	N/R	N/R	6	43	26	25
A1	10–20	5.6	N/R	0.027	N/R	2.3	3.8	5.1	0.4	N/R	N/R	N/R	N/R	2	23	12	64
A1	20–30	5.5	N/R	0.035	N/R	2.4	4.3	4.7	0.4	N/R	N/R	N/R	N/R	2	21	11	66
A2	50-60	5.8	N/R	0.041	N/R	2.7	6.2	5.0	0.6	N/R	N/R	N/R	N/R	1	17	9	74
A2	80–90	5.4	N/R	0.040	N/R	2.5	7.2	2.4	0.4	N/R	N/R	N/R	N/R	1	18	13	68
B21	110-120	5.0	N/R	0.040	N/R	2.1	7.7	1.0	0.4	N/R	N/R	N/R	N/R	1	21	16	63
C2m	130-140	4.6	N/R	0.038	N/R	1.9	6.6	0.6	0.3	N/R	N/R	N/R	N/R	1	20	18	60

Management considerations

² Source: Government of Victoria State Chemistry Laboratory.